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Transcriptional motifs are small regulatory interaction patterns that regulate biological functions

in highly-interacting cellular networks. Recently, attempts have been made to explain the

significance of transcriptional motifs through dynamic function. However, fundamental questions

remain unanswered. Why are certain transcriptional motifs with similar dynamic function

abundant while others occur rarely? What are the criteria for topological generalization of these

motifs into complex networks? Here, we present a novel paradigm that combines non-equilibrium

thermodynamics with multiobjective-optimality for network analysis. We found that energetic

cost, defined herein as specific dissipation energy, is minimal at the optimal environmental

conditions and it correlates inversely with the abundance of the network motifs obtained

experimentally for E. coli and S. cerevisiae. This yields evidence that dissipative energetics is the

underlying criteria used during evolution for motif selection and that biological systems during

transcription tend towards evolutionary selection of subgraphs which produces minimum specific

heat dissipation under optimal conditions, thereby explaining the abundance/rare occurrence of

some motifs. We show that although certain motifs had similar dynamical functionality, they had

significantly different energetic cost, thus explaining the abundance/rare occurrence of these

motifs. The presented insights may establish global thermodynamic analysis as a backbone in

designing and understanding complex networks systems, such as metabolic and protein

interaction networks.

1. Introduction

Network motifs are the basic building blocks of complex

networks and are the smallest overrepresented repeated

subgraphs occurring commonly in both man-made large-scale

networks (such as the world-wide web) and complex natural

networks (such as cellular networks).1–4 Motifs in transcriptional

regulatory networks (TRNs) have numerous functions that help

maintain phenotypes. The three-node feed-forward loop (FFL)

motifs: (1) are among the most abundant and conserved TRNs;

(2) are the smallest repeated interacting unit between genes/

operon and transcription factors, and maintain gene regulation;

and (3) have dynamical functions such as pulse generation,

response delays, and noise filtering.5 TRN motifs of various

types including FFL, bifan, and single input module (SIM)

(Fig. 1) have been found to occur in real networks in organisms

such as Escherichia coli and Saccharomyces cerevisiae.

There has been a continued struggle in understanding the

common basis of occurrence of these motifs in network

biology. Insights about the wiring of these network motifs

could explain their evolutionary selection criteria, uncover the

mechanism behind TRNs evolution, and decipher the basis

behind the coordination of regulatory processes. Intense interest

in explaining the selection of one motif over another and the

frequency of occurrence of these network motifs in TRNs has

focused attention on the structural and dynamical basis of

these motifs.5–7 Despite the advances in the identification of

the mechanisms for the natural occurrence of these motifs,

structural and dynamical functional bases have failed to

provide an understanding of the properties and the density of

occurrence of these motifs. Thus, there has been the lack of a

universal basis which can describe the underlying mechanisms

behind the occurrence of these motifs, as well as the way in

which these motifs encode functional information and the way

that both the dynamical function and the topological generalization

may evolve.6

Cellular systems perform an array of regulatory,8–11 homeo-

static,12–16 and phenotypic functions thus they exhibit a tradeoff

between proliferation and differentiation,17 cellular functions

and growth,18,19 and cellular functions and robustness.20–22

Therefore, a multiobjective-optimal approach (where tradeoff
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between several objectives has to be attained simultaneously) is

necessary when seeking optimal functional analysis of these

systems.17,23–24 A multiobjective solution is said to be Pareto-

optimal if there is no other feasible solution that will yield an

improvement in an objective without causing degradation in at

least one other objective.25–27 Similar to cellular processes,

transcription also works using the Pareto principle, i.e. higher

transcription occurs at the cost of robustness or a cellular

function.28 We have developed a Pareto thermodynamic

criterion that couples the non-equilibrium thermodynamic

analysis for TRNs with Pareto-optimal solutions for attaining

biological functions of a motif.

Here, we postulate that the abundance of certain motifs in a

network can be predicted based on a conceptual framework that

integrates non-equilibrium thermodynamics with multiobjective-

optimality of the biological functions to be carried out by

the motif (such as transcriptional rate, and/or robustness). We

present an energetic-cost (defined herein as specific dissipation

energy) theory that can explain which network motif has a

higher probability of selection under a given environment, as

well as explain the topological generalization of the subgraphs

compared to other circuit designs. Through the developed

framework, we have tried to answer the questions of why

evolution converges to the same network motifs in TRNs and

what advantage these selected network motifs offer as compared

to other subgraphs for both steady state and dynamic analyses.

2. Systems and methods

2.1. Kinetic modeling of activation of Z by X using cycle concept

Our goal here is to develop a mathematical treatise which

allows estimation of energetic cost during transcriptional

regulation. We first present the formulation for the simplest

case X - Z (TF X activates Z).

2.1.1 Mechanism. The mechanism by which the protein

Z is transcribed by the transcription factor X is divided in a

three-step process as shown below and in Fig. 2.

Step 1: The transcription factor X binds a free DNA site of

the promoter region of protein Z (DZ) to form a complex

(DZX): DZ + X 2 DZX. If k
ZX
1 [s�1 nM�1] and kZX�1 [s�1] are

the forward and backward kinetic constants, respectively, then

the net flux for this reaction is given by

JZX1 = kZX1 [DZ][X] � kZX�1 [DZX] (1)

and the reaction chemical potential can be estimated as:

DmZX1 ¼ <T ln
kZX�1 ½DZX �
kZX1 ½DZ�½X �

� �
¼ <T ln

½DZX �
KZX

1 ½DZ�½X �

� �
ð2Þ

where <[J K�1 mol�1] is the gas constant, T[K] is the absolute

temperature and KZX
1 = kZX1 /kZX�1 [nM�1] is the association

equilibrium constant.

Fig. 1 Description of Network Motifs and non-equilibrium TRNs. Patterns of subgraphs and network motifs found in E. coli and S. cerevisiae

networks. FFL is the common three node subgraph, bifan is the common four node subgraph, and SR is the common simple regulation motif.

Higher order FFLs (multi-output, 2Z-FFL for four node TRNs) and diamond motif are common four node subgraphs in these organisms. Also

shown are the topologically generalized networks from simple network motifs.
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Step 2: RNA polymerase (R) binds DZX and forms a

complex (RDZX): R + DZX 2 RDZX. If k0,ZX2 [s�1 nM�1]

and kZX�2 [s�1] are the forward and backward kinetic constants

for this step, respectively then net flux for this reaction can be

written as:

JZX2 = k0,ZX2 [R][DZX] � kZX�2 [RDZX]

= kZX2 [DZX] � kZX�2 [RDZX] (3)

where kZX2 = k0,ZX2 [R] [s�1] is a pseudo-first order kinetic

constant. If KZX
2 = kZX2 /kZX�2 is the association equilibrium

constant for this reaction, then the reaction chemical potential

is given by

DmZX2 ¼ <T ln
kZX�2 ½RDZX �
kZX2 ½DZX �

� �
¼ <T ln

½RDZX �
KZX

2 ½DZX �

� �
ð4Þ

Step 3: Once RNA polymerase is bound, there is a

transcription step to form mRNA and then a translation step

which requires recruitment of the amino acids (AAZ) required to

form the protein Z. In our model, for the sake of simplicity, we

have combined both steps:RDZX+AAZ2R+DZ+XZ+Z.

Note that as a result of transcription of Z, RNA polymerase

molecules are released, thus freeing the DNA site and releasing

the bound co-activator (XZ). If k
ZX
3 = k0,ZX3 [AAZ][s

�1] and

kZX�3 = k0,ZX�3 [R][s�1 nM�2] are pseudo-first order kinetic

constants, and KZX
3 = kZX3 /kZX�3 [nM2] is the association

equilibrium constant for this reaction, then the net reaction

flux and reaction chemical potential are given by:

JZX3 = kZX3 [RDZX] � kZX�3 [DZ][XZ][Z] (5)

DmZX3 ¼ <T ln
½DZ�½XZ�½Z�
KZX

3 ½RDZX �

� �

The described steps 1 to 3 are represented as a green triangular

cycle in Fig. 2A and B. An analogous mechanism describes the

basal activity (blue cycle in Fig. 2A and B) in which a basal

transcription factor B binds the free promoter region of Z,

initiating the cycle and basal level transcription of Z.

2.1.2 Mass balance equations. Here Ji and ai are defined as

the external intake flux in [nM s�1] and the degradation rate in

[s�1] of the species i, respectively. Flux is defined positive for

Fig. 2 Cyclic representation of the activation pathway of protein Z by transcription factor X. (A) Cyclic transcriptional activation schematic for

protein synthesis which includes the transcriptional activation of gene Z by TF X (green cycle) and basal activators B (blue cycle), and subsequent

translation steps for protein synthesis with amino acid incorporation. (B) Simplified representation of the cyclic activation model. (C)

Transcription rate of Z as a function of its activator X. Curve follows a first order Hill’s function, with maximal transcription rate of 1 [nM s�1]

and activation coefficient of 0.1 [nM].
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incoming flux and negative otherwise. The mass balance of all

species in Fig. 2A can be described by the following differential

equations:

d½X �
dt
¼ JX � JZX

1 � aX ½X� ð6Þ

d½B�
dt
¼ JB � JZB

1 � aB½B� ð7Þ

d½Z�
dt
¼ JZX

3 þ JZB
3 þ JZ � aZ½Z� ð8Þ

d½XZ�
dt
¼ JZX

3 þ JXZ
� aXZ

½XZ� ð9Þ

d½BZ�
dt
¼ JZB

3 þ JBZ
� aBZ

½BZ� ð10Þ

d½DZ�
dt
¼ JZX

3 þ JZB
3 � JZX

1 � JZB
1 ð11Þ

d½DZX �
dt

¼ JZX
1 � JZX

2 ð12Þ

d½DZB�
dt

¼ JZB
1 � JZB

2 ð13Þ

d½RDZX �
dt

¼ JZX
2 � JZX

3 ð14Þ

d½RDZB�
dt

¼ JZB
2 � JZB

3 ð15Þ

Additionally, mass balance has to satisfy DNA site balance

equality constraint:

[DZ]tot = [DZ] + [DZX] + [DZB] + [RDZX] + [RDZB]

(16)

In eqn (8), the mass balance is between generated transcription

factor Z through main cycle (JZX3 ) and through basal cycle flux

(JZB3 ), incoming transcription factor Z flux (through different TF

cycles, can be assumed negligible if Z is not generated through

any other cycles) and the degradation of product Z. Here, XZ

and Bz denotes the modified transcription factors released from

the cycle after the transcription and translation process.

2.1.3 Steady state solution. At steady state, JZX1 = JZX2 =

JZX3 = JZXC , where JZXC [nM s�1] is the cyclic flux of cycle ZX.

Analytical solution of the mass balance leads to:

A similar equation can be found for the basal activity cyclic

flux JZBC . Since protein transcription is a highly irreversible

process, one can expect that the rate of the forward

reaction in each of the three steps, to be much higher

than the rate of the corresponding backward reaction.

This assumption shifts the entire thermodynamic analysis

away from equilibrium. This contrasts many other postulated

models where the forward and backward rates are assumed to

be equal, leading to thermodynamic equilibrium and zero

net flux. If we assume that the order of magnitude for

concentration of the species is the same, then by assuming

kZXi c kZX�i for i = {1,2,3}, the cyclic flux ZX can be

written as:

Let JZT be the total transcriptional rate of protein Z in

[nM s�1], which is the sum of the transcription rate of Z due

to the activity of transcription factor (TF) X, JZXT , and the

basal activity of basal TF B, JZBT . Since protein Z is being

transcribed in the third reaction of the proposed mechanism,

JZXT = JZX3 and JZBT = JZB3 . Thus, JZT = JZXT + JZBT = JZX3 +

JZB3 = JZXC + JZBC . For I = X, B we define:

bZI ¼ kZI2 kZI3 ½DZ�tot
ðkZI2 þ kZI3 Þ

; ½nM s�1�; ð19Þ

and

kZI ¼ kZI2 kZI3
kZI1 ðkZI2 þ kZI3 Þ

; ½nM�; ð20Þ

Then, the cyclic flux of ZX (eqn (18)) and the corresponding

flux for ZB can be written as follows:

JZX
C ¼ bZX ½X�

kZX þ ½X � þ kZX
kZB ½B�

ð21Þ

JZB
C ¼ bZB½B�

kZB þ ½B� þ kZB
kZX ½X�

ð22Þ

In principle, JZT is a function of both activator [X] and [B].

However, if the concentration of the basal activator does not

change in the system, then the transcription rate of Z is only a

function of its main activator X. The basal and maximal

transcription rates, JZT,Basal and JZT,Max, are defined as the

transcription rates when [X] - 0 and [X] - N, respectively:

JZ
T ;Basal ¼

bZB½B�
kZB þ ½B� ð23Þ

JZT,Max = bZX (24)

Notice that JZT,Basal is constant for a specified [B]. In addition,

from eqn (24), bZX can be conceptually defined as the maximal

transcription rate JZT,Max of protein Z due to the activity of its

transcription factor X. This parameter includes a cooperativity

term, $ZX which deals with various input logics. The

cooperativity term ($ZX) quantifies the interaction between

two proteins bound on two sites. As indicated earlier, each

JZX
C ¼ ½DZ�totðkZX1 kZX2 kZX3 ½X � þ kZX�1 k

ZX
�2 k

ZX
�3 ½XZ�½Z�Þ

kZX�1 k
ZX
�2 þ kZX�1 k

ZX
3 þ kZX2 kZX3 þ ðkZX2 þ kZX�2 þ kZX3 ÞkZX1 ½X � þ ðkZX�1 þ kZX2 þ kZX�2 ÞkZX�3 ½XZ�½Z�

ð17Þ

JZX
C � kZX1 kZX2 kZX3 kZB2 kZB3 ½X �½DZ�tot

kZX2 kZX3 kZB2 kZB3 þ kZX1 kZB2 kZB3 ðkZX2 þ kZX3 Þ½X � þ kZB1 kZX2 kZX3 ðkZB2 þ kZB3 Þ½B�
ð18Þ
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cycle represents the binding of a transcription factor on a

DNA site to induce transcription. Hence, cooperativity term

in our model explicitly allows binding interactions to be taken

into account. In principle, bZX = $ZX bZ where bZ is a

common maximal transcription rate for all the cycles involved

in the transcription of Z. Essentially, different bZI values are
obtained by incorporation of different cooperativity terms in

the cycles, represented by $ZI. This effect was previously

described by Buchler et al., 2003.29 In general, $ZI is low for

OR input logic and high for AND input logics. Moreover, the

concentration of X required to reach half of (JZT,Max � JZT,Basal)

known as the activation coefficient KX is determined by the

following relationship between kZX and kZB:

KX ¼ kZX
½B� þ kZB

kZB

� �
ð25Þ

Fig. 2C shows the approximate solution for highly irreversible

reactions far away from thermodynamic equilibrium. Note

that the transcription rate of Z follows a first order Hill’s

function with basal transcriptional activity:

JZ
T ¼ JZ

T ;Basal þ
ðJZ

T ;Max � JZ
T ;BasalÞ½X �

KX þ ½X � ð26Þ

When X transcribes Z in absence of the basal activity ([B] = 0,

JZT,Basal = 0), then KX = kZX and

JZ
T ¼

bZX ½X �
kZX þ ½X � ð27Þ

which is same as the first order Hill’s equation.

2.1.4 Energy of activation. Because these reactions are

highly irreversible and thus are far apart from chemical

equilibrium, the energy dissipated is high. As the reaction

progresses, the rate at which energy is dissipated is expressed

by the product between the flux and the chemical potential of

reaction. Whereas, the total heat dissipation rate HDRZ [J s�1]

is given by the addition of the heat dissipated by each cycle:

HDRZ ¼ HDRZX þHDRZB

¼ �
X3
i¼1

JZX
i DmZXi þ

X3
i¼1

JZB
i DmZBi

 !

¼ �
X
I¼X ;B

X3
i¼1

JZI
i DmZIi

ð28Þ

At steady state:

HDRZI = �(JZI1 DmZI1 + JZI2 DmZI2 + JZI3 DmZI3 )

= �JZIC (DmZI1 + DmZI2 + DmZI3 )

= �JZIC DmZIC (29)

where

DmZIC ¼ DmZI1 þ DmZI2 þ DmZI3

¼ <T ln
½IZ�½Z�

KZI
1 KZI

2 KZI
3 ½I �

� �
ð30Þ

is defined as the chemical potential of the cycle for I=TFs X, B.

Here, we introduce the concept of specific dissipation energy

(SDE), defined by us as the ratio between the heat dissipation

rate to the input mass flux required to keep the system under

non-equilibrium steady state (NESS) conditions:

SDEZ = HDRZ/JX (31)

2.2 Repression of Z by X

2.2.1 Mechanism. Similar to the activation case, the

mechanism of repression by repressor X can be divided in a

three step process (Fig. 3):

Step 1: As in the activation case, the transcription factor X

(in this case repressor) binds a free DNA site of the promoter

region of protein Z (DZ) to form an occupied DNA site (DZX):

DZ + X 2 DZX. If K
ZX
1 [s�1 nM�1] and KZX

�1 [s�1] are the

forward and backward kinetic constants, respectively, and

KZX
1 = kZX1 /kZX�1 [nM�1] is the association equilibrium constant,

then the net flux and the chemical potential for this reaction are:

JZX1 = kZX1 [DZ][X] � kZX�1 [DZX] (32)

DmZX1 ¼ <T ln
kZX�1 ½DZX �
kZX1 ½DZ�½X �

� �
¼ <T ln

½DZX �
KZX

1 ½DZ�½X �

� �
ð33Þ

Step 2: Since X is a repressor, RNA polymerase (R) cannot

bind to the occupied DNA site (DZX). In turn, the X-bound

site changes its configuration into another energetic state

ðD�ZXÞ : DZX $ D�ZX . Let kZX2 [s�1] and kZX�2 [s�1] be the

forward and backward kinetic constants, respectively, and

KZX
2 = kZX2 / kZX�2 the association equilibrium constant. Then,

the net flux and chemical potential for this step are:

JZX
2 ¼ kZX2 ½DZX � � kZX�2 ½D�ZX � ð34Þ

DmZX2 ¼ <T ln
kZX�2 ½D�ZX �
kZX2 ½DZX �

� �
¼ <T ln

½D�ZX �
KZX

2 ½DZX �

� �
ð35Þ

Step 3: In this last step, the activated X-bound site releases

the free DNA site and the co-repressor necessary for this

process (XZ). Because RNA polymerase is not bound, there

is no recruitment of amino acids (AAZ) and transcription and

translation of Z does not proceed: D�ZX $ DZ þ XZ. If

kZX3 [s�1] and kZX�3 [s�1 nM�1] are the forward and backward

kinetic constants, respectively, and KZX
3 = kZX3 /kZX�3 [nM1] is

the association equilibrium constant for this reaction, then the

reaction flux and reaction chemical potential are given by:

JZX
3 ¼ kZX3 ½D�ZX � � kZX�3 ½DZ�½XZ� ð36Þ

DmZX3 ¼ <T ln
½DZ�½XZ�
KZX

3 ½D�ZX �

� �
ð37Þ

The described steps 1, 2 and 3 are represented as a red

triangular cycle in Fig. 3A and B. The basal activity (blue

cycle in Fig. 3A and B), in which a basal transcription factor B

binds the free promoter region of Z, initiating the cycle and

further transcription of Z, follows the activation mechanism

shown earlier.

2.2.2 Mass balance equations. The differential equations

describing the repression system are the same as those presented
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in the activation mechanism with only two differences. First

the mass balance equation of [Z] does not include JZX3 ,

because the transcription of Z is only due to the basal activity.

Second, RDZX is conceptually replaced by D�ZX . For the

repression process, the total concentration of DNA sites is

now written as:

½DZ�tot ¼ ½DZ� þ ½DZX � þ ½DZB� þ ½D�ZX � þ ½RDZB� ð38Þ

2.2.3 Steady state solution. At non-equilibrium steady state

(NESS), it can be shown that eqn (19)–(23) are also valid in the

repression mechanism. However, when X is a repressor, the total

transcription rate of Z equals only the basal cyclic flux: JZT =

JZBT = JZB3 = JZBC . As [X]- 0, the basal transcription rate JZT,Basal
(eqn (23)) follows the same relationship as in the activation case:

the basal transcription rate is independent of the activating or

repressing nature of X. However, as expected, the basal transcrip-

tion rate corresponds to the maximal transcription rate. As

[X] - N, the transcription rate of Z decreases and approaches

to zero: JZT,Min = 0. Moreover, the concentration of X required to

reach half of (JZT,Basal� JZT,Min) = JZT,Basal, K
X, is determined by

the same relationship between kZX and kZB shown in eqn (25).

Fig. 3C shows the solution for irreversible reactions that are

far away from thermodynamic equilibrium. Finally, it is

observed that the transcription rate of Z follows a Hill’s first

order equation for repressor activity:

JZ
T ¼

JZ
T ;Basal

1þ ½X �
KX

ð39Þ

2.2.4 Energy of repression. Eqn (28)–(29) express the

general concept of the HDRZ [J s�1] associated with any

transcription process, and thus are valid for representing the

repression scenario. However, the cyclic chemical potential

equation given by eqn (30) must be changed since the overall

reactions are different:

DmZIC ¼ DmZI1 þDmZI2 þDmZI3 ¼<T ln
½IZ�½PZ�

KZI
1 KZI

2 KZI
3 ½I �

� �
ð40Þ

where

½PZ� ¼
½Z�; if I ¼ B ðor I is an activatorÞ
1; if I ¼ X ðor I is a repressorÞ

�

Fig. 3 Cyclic representation of the repression pathway of protein Z by transcription factorX. (A) Cyclic transcriptional repression schematic of gene

Z (red cycle). Detailed mechanism showing both basal and repressor activity. (B) Simplified representation of the cyclic repression model. (C)

Transcription rate of Z as a function of the repressor concentration X. Curve follows a first order Hill’s function, with maximal transcription rate

given by the basal activity of 0.2 [nM s�1] and activation coefficient of 0.1 [nM].
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Solution of the mass balance will allow the computation of JX
for the final determination of SDEZ, as defined by eqn (31).

2.3 Transcriptional regulation of Z by two transcription

factors X and Y

In this section, we will analyze multi-gene regulation. Specifically,

we will present formulation for the transcription (activation and

repression) of the protein Z by two transcription factors X and Y

(Fig. 4).

2.3.1 Mechanism. The basic mechanism by which two

transcription factors activate or repress protein transcription

is the three step process described previously for activation

and for repression in sections 2.1 and 2.2. Here, we study

multi-gene regulation and allow both X and Y (and basal

transcription factor B) to compete for a free DNA site in the

promoter region of Z. The competitive binding is irrespective

of whether X (or Y) is an activator or a repressor. However, in

addition to the individual TF binding to DZ, there is also a

joint interaction between X and Y, so in principle the complex

XY may be considered as an additional transcription factor

whose concentration is given by the product between the

concentration of X and Y. In other words, [XY] = [X][Y].

The activator or repressor nature of this complex depends on

two factors:

1. The independent activation-repression nature of X and Y.

2. The Boolean input logic used to transcribe Z which can

be AND or OR.

In order to explain the Boolean input logic, let us assume

that both X and Y are activators of Z. In principle, protein Z

should be transcribed at least from the individual binding of X

and Y. However, this is not completely true. If both TF X and

Y are required to transcribe Z (Boolean input logic AND),

then transcription cannot proceed with individual binding of X

or Y. Therefore when individually present, TF X or Y will bind

to the promoter site without transcribing Z, and thus acts as

repressor contrary to their activating nature. Therefore, when

bothX andY are present for AND input logic, transcription ofZ

can only proceed from theXY cycle (and from the basal cycle ZB

which by definition is always transcribing Z). This XY complex

will bind the promoter region, recruit RNA polymerase and

finally transcribe (and translate) Z. On the other hand, if only

one of the two transcription factors is required (Boolean input

logic OR) for transcription of Z, then the individual binding as

well as the complex XY binding, will lead to formation of Z, as

shown in Fig. 4, which gives a simplified representation of the

four cycles is presented. The cycles, entering and leaving fluxes

for ZX, ZY and ZXY are in black color. The activator and

repressor behaviors are presented as green and red arrows,

respectively, according to the input logic and independent nature

of X and Y as shown in the tables in Fig. 4. When the cycle ZI

behaves as a repressor (for I = X, Y, XY), the transcription flux

JZI3 is not present (as shown in Fig. 3), and thus the corres-

ponding arrow is not shown in Fig. 4.

2.3.2 Mass balance solution. If the irreversibility condition

is satisfied, then the cyclic fluxes can be approximated as

follows:

JZI
C ¼

bZI ½I �
kZI þ

P
J¼B;X;Y ;XY

kZI
kZJ ½J�

; ð41Þ

where bZI and kZI are defined by eqn (19) and (20), respectively.

Fig. S1 presents the transcription rate surface for both input

logics OR and AND, using the approximated solution.

For Boolean input logic OR, JZT = JZBC + JZXC + JZYC +

JZXYC . If both basal activity and the transcription rate from the

combined activity of X and Y are zero (i.e., bZXY is very

low and kZXY is very high), the expression for the total

transcription rate of Z, given by eqn (41) equals the relationship

given by Mangan and Alon (2003):5

JZ
T ¼

bZX ½X�kZX

1þ ½X �
kZX þ

½Y �
kZY

þ
bZY ½Y �kZY

1þ ½Y �
kZY þ

½X �
kZX

ð42Þ

For Boolean input logic AND case, transcription rate of Z is

given by the basal activity and the combined interaction of X

and Y: JZT = JZBC + JZXYC . If basal activity is zero and kZXY =

kZXkZY, then the expression for JZT (41) also equals the

relationship given by Mangan and Alon (2003):5

JZ
T ¼

bZX ½X �kZX

1þ ½X �
kZX

�
bZY ½Y �kZY

1þ ½Y �
kZY

ð43Þ

2.3.3 Energy of transcription. At steady state, the total

HDR for this four-cycle system can be written as follows:

HDRZ ¼ �
X

I¼B;X ;Y ;XY
JZI
C DmZIC ð44Þ

where

DmZIC ¼ <T ln
½IZ�½PZ�

KZI
1 KZI

2 KZI
3 ½I �

� �
ð45Þ

Analytical solution for HDRZ is highly complex and input logic

dependent in this scenario, thus numerical solutions are required.

Fig. 4 Multigene Regulation: Cyclic model of gene Z transcription by

two TF inputs X and Y. The schematic shows three-step transcription

process of Z by X and Y. Black arrows become green (activator

behavior) or red (repressor behavior) based on the individual activa-

tion or repressor nature of X and Y, and the input logic AND or OR.

When a transcription factor acts as a repressor, the corresponding

output flux of Z, J3, is not present and not shown in the right-side

tables. The adjoining table shows various combinatorial Boolean

transcription logics of AND and OR. Activation is shown by green

arrows and repression by red.
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The involved steps and generalized formulation for cyclic

transcriptional network model for FFL is presented in Table 1.

3. Multiobjective optimality of transcriptional

networks

3.1 Multiobjective optimization

A multiobjective optimization is a problem involving several

competing objectives and constraints. The best solution of

multiobjective optimization is the one that satisfies the

conflicting objectives. A Pareto solution is one where any

improvement in one objective can only take place at the cost

of another objective. A Pareto set is a set of Pareto-optimal

solutions. The ‘‘anchor value’’ is obtained for a particular

objective function if that function alone is optimized, given the

bounds on the design parameters.

3.2 Pareto concept

Fig. 5A presents a general scheme of a Pareto set for a

bi-objective maximization and minimization problem. As seen

in the figure, generally there is a tradeoff between cellular

objectives of robustness (f1) and transcription rate (f2). If

objective function f1 alone is optimized (maximized), then

the optimal value is fmax
1 (shown as point P1). Similarly, if

objective function f2 alone is optimized then the optimal value

is fmax
2 (shown as point P2). Here, fmax

1 and fmax
2 are the anchor

values for objective functions f1 and f2, respectively. The ideal

or Utopian optimal solution (fmax
1 , fmax

2 ) obtained by the

individual maximization of the objective functions is not a

feasible solution of the multiobjective optimization problem.

As seen in Fig. 5A, the line joining points P1 and P2 defines the

boundary of the feasible space and is termed as the Pareto

frontier. That is, for every optimal solution on arc P1–P2, it is

not possible to improve both objectives simultaneously. If one

objective is improved, it must be at the expense of the other

one. These optimal points on the arc are often referred to as

extreme Pareto points. In view of their stated characteristics,

Pareto points are usually the candidates of choice in the

process of multi-objective optimization.

3.3 Normalized constraint (NC) method

The NC method is based on the design space reductions using

reduction constraints. The reduction constraint is constructed

by ensuring the orthogonality by constructing the dot product

between the normal w and r0 an arbitrary point on a plane.

The vector equation of a plane is expressed as w�(r � r0) = 0.

To solve for multiobjective solutions, a reduced feasible space

is constructed using the previous equation as w�(r � g) r 0

where g is any point in the feasible space. In Fig. 5B (1) the

non-normalized design space and the Pareto frontier of a

bi-objective problem is shown. Fig. 5B (3) represents the

normalized Pareto frontier in the normalized design space.

In the normalized objective space, while the utopia point is at

the origin, all anchor points are one unit away from the utopia

point. A bar over a variable implies that it is normalized. The

two anchor points denoted by g�1 and g�2, are obtained by

successively minimizing the first and second design metrics.

The line joining these two points is the utopia line. The actual

optimization takes place in the normalized objective space. Let

%g be the normalized form of g and gu, the utopia point is

defined as gu = [g1(x
1*) g2(x

2*)]T where l1 and l2 be the

distances between g2* and g1*, and the Utopia point, gu,

respectively (Fig. 5B). Then l1 = g1(x
2*) � g1(x

1*) and l2 =

g2(x
1*)� g2(x

2*). The normalized design objectives can then be

evaluated as:

�gT ¼ g1ðxÞ � g1ðx1
� Þ

‘1

g2ðxÞ � g2ðx2
� Þ

‘2

� �

%N1 is defined as the direction from %g
1* to %g

2*, yielding %N1 =

%g
2*� %g

1*. Next, the utopia line is divided into m1 � 1 segments,

resulting in m1 points. A normalized increment, d1 along the

direction %N1 for a prescribed number of solutions, m1, is

obtained as:

d1 ¼
1

m1 � 1

As seen in Fig. 5B, the next step involves generating a set of

evenly distributed points on the utopia line as %XPj = a1j %g
1* +

a2j %g
2* where 0 r a1j r 1, a1j + a2j = 1 and a1j is incremented

by d1 between 0 and 1 (Fig. 5B), with values of j as j A
{1, 2,. . .,m1}.

Fig. 5B (4) shows one of the generic points intersecting the

segments used to define a normal to the utopia line. This

normal line is used to reduce the feasible space as indicated in

the figure. As observed in the figure, if we minimize %g2, the

resulting optimum point is %g
2*. By translating the normal line,

a corresponding set of solutions are generated. This is done by

generating a corresponding set of Pareto points by solving a

succession of optimization runs of Problem P2 (see Text S2).

Each optimization run corresponds to a point on the utopia

line. For each generated point on the utopia line, solve for the

jth point:

Problem P2 (for jth point):

min
x
f�g2ðxÞg

subject to: hkðxÞ ¼ 0; 1 � k � r
fjðxÞ ¼ 0; 1 � j � s
xl � xi � xu1 � i � nx
�N1ð�g� �XPjÞT � 0

This results in a set of vectors for the design parameters. Each

Pareto point gives one vector x. Then, cellular objective

functions are computed by evaluating the non-normalized

design metrics that correspond to each Pareto point. The

non-normalized design objectives can be obtained by using

the relation g = [ %g1l1 + g1(x
1*) %g2l2 + g2(x

2*)]T.

Importantly, the generation of the set of Pareto points is

performed in the normalized objective space, resulting in

critically beneficial scaling properties. The steps involved and

the essential mathematical formulation for the NC method are

presented in Table S1 for the n-objective case.

3.4 Description of non-equilibrium TRNs

Non-equilibrium processes require an external signal, flux or driving

force to maintain the system far away from equilibrium. The role of

non-equilibrium thermodynamics in small-scale systems such as

biological molecular machines and RNA folding/unfolding has

sparked a surge of interest in the field.30–33 Equilibrium systems
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are generally governed by classical thermodynamics and have

reversible work equal to the Gibbs free energy change at

constant temperature and pressure. Although the combination

of non-equilibrium thermodynamics with modern network

theory dates back more than 40 years,34 it was not until the

recent formulation of non-equilibrium steady-state (NESS)

analysis that it was utilized extensively in biological systems.32,35

In NESS analysis, Gibbs free energy is unequal to the work

Table 1 Cyclic transcriptional network mathematical forumlation for FFL

A. Steps for estimating specific dissipation energy (SDE)

1. Set global parameters:
Concentration of basal activator of Y, [A]
Concentration of basal activator of Z, [B]
Concentration of total available sites for transcription of Y, [DY]tot
Concentration of total available sites for transcription of Z, [DZ]tot
Degradation rates for each species, a
Temperature, T

2. For each of the 8 cycles forming the FFL motif YA, YX, ZB, ZX, ZY, ZXY (in general, cycle WI corresponds to transcription or repression ofW
due to transcription factor I):

For step 1:
Set the kinetic parameters kWI

1 and kWI
�1

State the net reaction flux as JWI
1 = kWI

1 [DW][I] � kWI
�1[DWI]

State the net change in chemical potential as DmWI
1 ¼ <T ln

kWI
�1 ðDWI Þ

kWI
1
½DW �½I �

� �
For step 2:
Set the kinetic parameters kWI

2 and kWI
�2

State the net reaction flux as JWI
2 = kWI

2 [DWI] � kWI
�2[RDWI]

State the net change in chemical potential as DmWI
2 ¼ <T ln

kWI
�2 ½RDWI �
kWI
2
½DWI �

� �
For step 3:
Set the kinetic parameters kWI

3 and kWI
�3

State the net reaction flux as JWI
3 = kWI

3 [RDWI] � kWI
�3[DW][IW][PW]

State the net change in chemical potential as DmWI
3 ¼ <T ln

kWI
�3 ½DW �½IW �½PW �
kWI
3
½RDWI �

� �
If lWI = 1 (i.e., I is an activator ofW), [PW] = [W]. If lWI = 0 (i.e., I is a repressor ofW), [PW] = 1. The attached table shows the logic parameter
lWI for each of the 8 FFLs using AND and OR logics.

3. For each of the involved species state the mass conservation equations. This includes transcription factors (A, B, X, Y, Z), released cofactors
(AY, XY, BZ, XZ, YZ, XYZ, or in general, IW), and occupied DNA sites (in general, [DW], [DWI] and [RDWI]), resulting in a set of 24 ODE’s

4. Use the conservation equation of the total available sites:

½DY �tot ¼ DY þ
P

l¼fA;Xg
½DYI � þ

P
l¼fA;Xg

½RDYI �

½DZ�tot ¼ DZ þ
P

l¼fB;X ;Y ;XYg
½DZI � þ

P
l¼fB;X ;Y ;XYg

½RDZI �

5. Solve the steady state equations to find the concentrations of the involved species

6. Calculate the net change in chemical potential and the net flux for each step in each cycle

7. Calculate the total Heat Dissipation Rate (HDR):

HDR ¼
P
cycle

P
step

ðJDmÞ

8. Calculate the external consumption flux of X:
JX = JYX1 + JZX1 + JZXY1 + a[X]

9. Calculate the Specific Dissipation Energy (SDE):
SDE = HDR/JX

B. Logic parameter lWI as a function of the FFL motif with AND or OR logic.

OR Logic AND Logic

C1 C2 C3 C4 I1 I2 I3 I4 C1 C2 C3 C4 I1 I2 I3 I4

lYA 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
lYX 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
lZB 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
lZX 1 0 0 1 1 0 0 1 0 0 1 1 1 1 0 0
lZY 1 1 0 0 0 0 1 1 0 1 1 0 0 1 1 0
lZXY 1 1 0 1 1 0 1 1 1 0 0 0 0 0 0 1
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done on the system because of heat/work dissipation. More-

over, chemical potential is equivalent to heat dissipated by the

system (or work done on the system) which in turn is equivalent

to entropy generated by the system.32,35,36 It has been shown

earlier that the average work dissipated along any trajectory

between different non-equilibrium states is always positive.37 This

result led to our two point hypothesis. First, the heat dissipation

normalized to the input mass flux, defined by us as specific

dissipation energy (SDE), should be minimal for biological

systems under optimal nutrient conditions. Second, systems with

lowest SDE should win out during evolutionary selection.

Specifically, the dissipated work will be directly proportional

to the input mass flux or raw materials utilized in moving from

one state to another, hence, normalized heat dissipation may

serve as a criterion for choosing a trajectory to move from

between different states. Interestingly, a recent study38 observed

that robustness is inversely related to dissipation cost in signal

transduction networks.

To evaluate the energetic cost involved during transcription,

we utilized previous NESS analysis and developed a novel

non-equilibrium thermodynamic kinetic formulation for gene

transcription. Since the developed modeling framework for feed-

forward loop network motifs is further used for computationally

expensive nonlinear multiobjective Pareto optimal solutions,

we made several assumptions to obtain simplified steady state

transcriptional rate solutions. Although these assumptions

were warranted to reduce the complexity in our modeling

framework, the solutions obtained using our model is similar

to the current paradigm of using Hill’s approximation for

modeling transcription. Another advantage of simplifying our

model in Hill’s form is that it allows easy generalization of

smaller network motifs into complex large-scale networks and

straightforward integration of well-developed transcriptional

network theories based on Hill’s framework in our model. The

developed non-equilibrium cyclic TRN model (a) explicitly

deals with as many interactions as required with no limit on

interactions (activation and repression) (Fig. 2–4), (b) uses a

competitive binding scheme for Boolean input logics (Fig. 2–4),

(c) can be easily generalized to complex networks, and (d)

provides estimation of the SDE for a gene-transcription factor

(TF) combination during a transcription-translation process.

As mentioned above, in order to simplify our model we made

several assumptions. We utilized a lumped parameter approach

where energetic terms involved during various molecular steps are

lumped into a single reaction. This was done not only to obtain a

simplified mass flux but also because of complexity involved

during TF-DNA interactions. Since our model clearly provides

similar mass flux solutions when compared to Hill’s model in

terms of lumped reaction, we thus used the lumped reaction for

estimating energetic in all of our analysis. Various mechanisms

involved during TF-based protein synthesis (TF-DNA

binding energetics,39,40 mRNA binding effecting translation,33,41

structural changes,42 chromatin conformations,43 and post-

translational changes44) may contribute towards energetic-cost

of cellular regulation. However, for the sake of simplicity, heat

dissipation obtained from the cyclic TRN model developed

here lumps these steps into reactions having pseudo rate

constants. We integrated these steps in various reaction fluxes

by explicitly taking into account appropriate concentrations as

indicated earlier in Section 2.

Fig. 5 Optimal SDE serves as the basis for efficient resource utilization in metabolic and transcriptional networks. (A) Pareto frontiers for a bi-objective

maximization and minimization problem.17 If objective functions f1 (for instance, robustness) and f2 (for example, transcriptional rate) alone are

individually maximized, then the optimal values are fmax
1 (point P1) and fmax

2 (point P2), respectively. Here g�1 and g�2 are the anchor values for design

objectives g1 and g2, respectively. The ideal or Utopian solution (g�1,g
�
2) obtained by the individual maximization of the objective functions is an

infeasible solution of the multiobjective optimization problem. The arc P1P2 is defined as the Pareto frontier containing multiobjective-optimal or

tradeoff solutions. Pareto-optimal and non-Pareto utilization of available energy and resources are shown as the corresponding circular area in the

triangle for two objectives of a cellular TRN. (B) Steps involved for obtaining Pareto frontiers. First, maximization problem between cellular

objectives is defined. The maximization problem is then converted into minimization and normalized in a feasible space using anchor points. The

utopian line is joined between anchor points and the normal to utopian line is moved along the utopian line to expand or restrict the feasible space.

Optimization of objectives in reduced feasible space (i.e. shaded region) eventually gives Pareto solutions on the maximal surface of feasible space.

(C) Using bi-level optimization SDE was found to be minimal at the Pareto frontier compared to any other point in the feasible space.
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4. Results and discussion

4.1 Analysis of energetic cost for transcriptional activation and

repression

We first analyzed total heat dissipation rate and specific

dissipation energy for various transcriptional regulatory pro-

cesses. During transcriptional activation (Fig. 6A), with an

increase in TF activator concentration there is a corresponding

increase in transcription and heat dissipation rate. Interestingly,

energetic cost (SDE) was found to be minimal at the highest

activator concentration. During transcriptional repression

(Fig. 6B), with an increase in repressor concentration there is

a corresponding decrease in the rate of transcription and an

increase in heat dissipation rate. Similar behavior was found for

multigene regulation as shown in Fig. 6C–E. Our analysis

shows that heat dissipation rate (HDR) increases with increase

Fig. 6 Energetic cost analysis of TRNs using kinetic model. (A) Transcription of Z as a function of activator X using non-equilibrium cyclic

activation model. Curve follows a first order Hill’s function. The corresponding heat dissipation rate (HDR) increases with an increase in

transcription. Conversely, normalized energetic cost i.e. specific dissipation energy (SDE) decreases with increase in activator concentration and is

minimal at highest transcription. (B) Transcriptional repression of Z as a function of repressor X using kinetic model. HDR is highest at maximal

repression and SDE is minimal at the maximal repressor concentration. (C–E) Transcription rate of Z with two factor regulation with OR input

logic using the developed kinetic model for multifactor regulation cases: both X and Y are activators (C), X is activator and Y is repressor (D),

X and Y are repressors (E). HDR and SDE for multi factor cases follow individual activator and repressor behavior.
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in cycle flux when driven by activator TF during transcriptional

activation. Interestingly, HDR increases even with reduced

cycle flux when driven by repressor TF during transcriptional

repression. This shows that dissipation rate is dependent only

on input flux which may be either a transcriptional activator

flux or a transcription repression flux. Notably, SDE is minimal

during high activation and repression, thus it could be used as a

correlate in either activation and/or repressive linkages in TRN

motifs.

4.2 Specific dissipation energy is minimal for biological

systems under optimal conditions

Numerous studies abound in which biological systems have

been shown to exhibit the property of optimality. However,

these studies have utilized either performance or mass

resources-based objectives to show that biological systems

operate under optimal conditions. Resultantly, the role of

energetic under function or mass resources-based optimal con-

ditions has remained unknown for biological systems. We first

wanted to assess whether there is any correlation between

Pareto-optimal transcriptional rates and SDE, where SDE is

the ratio of total heat dissipated by the system to the input mass

flux. To achieve this we used a bi-level optimization. In the first

step we obtained Pareto optimal transcription fluxes using the

Normalized Constraint method (Fig. 5B) and in the second

level we obtain transcription fluxes with minimal specific

dissipation energy (Fig. 5C).

As seen in Fig. 5B, the normalized constraint Pareto frontier

method is based on the design space reductions using

reduction constraints. The reduction constraint is constructed

by ensuring orthogonality by constructing the dot product

between the normal
-
w and r0 an arbitrary point on a plane.

The vector equation of a plane is expressed as

-
w�(r � r0) = 0

To solve for multiobjective solutions in Fig. 5B, a reduced

feasible space is constructed using the above equation as
-
w�(r � g) r 0

Maximize
x
!

g ¼ ðJY ; JZÞ

subject to: f ðx!Þ ¼ 0
HDRlb � HDR � HDRub

x
!
lb � x

! � x
!
ub

�N1ð�g� �XPjÞT � 0

where N1 is the normal to the utopia line, f(
-
x) represents the

nonlinear mass balance equations at steady state and
-
x =

[[X] JY JZ]
T. In the second level of optimization we solved an

optimization problem in the reduced feasible space to obtain

minimal specific dissipation energy.

Minimize
x
!

SDE

subject to: f ðx!Þ ¼ 0
HDRlb � HDR � HDRub

x
!
lb � x

! � x
!
ub

�N1ð�g� �XPjÞT � 0

Remarkably, as we moved normal along the utopian line as

shown in Fig. 5B, we found that the corresponding Pareto

optimal transcriptional rates were the same as the optimal

transcriptional fluxes with minimal SDE. This essentially

shows that Pareto optimal transcriptional fluxes indeed are

the fluxes that have minimal SDE (Fig. 5C).

To explain the variation of SDE in the transcription space

and on Pareto frontier, below we evaluate the energetic cost

along the vector from minimal transcription fluxes to the

Pareto optimal transcriptional fluxes for both FFL and

feedback TRNs.

4.2.1 Correlating pareto optimal surface with dissipative

energetics for FFL TRN motifs. The FFL TRN corresponds

to a coherent type-1 FFL (C1-FFL) with an OR input logic.

Essentially, the FFL network is composed of six cycles as

shown in Fig. 7A: two of them are involved in the transcription

of Y by X, and four in the transcription of Z by both X and Y.

The first two cycles correspond to cycle YA (transcription of Y

from its basal activator A) and cycle YX (transcription of Y

from the activator X), and the last four cycles are cycle ZB

(transcription of Z from its basal activator B), cycle ZX

(transcription of Z by the activator X), cycle ZY (transcription

of Z by activator Y) and cycle ZXY (transcription of Z by both

X and Y together). The kinetic constants used in Fig. 7B are

shown in Fig. 7A. The basal cycles are colored blue and the

other cycles are green, indicating that they are all transcrip-

tionally active. In fact, since this network follows an OR input

logic for transcription of Z (notice that transcription of Y does

not need any input logic, because only one transcription factor

is present), transcription of Z can be seen from all of the six

cycles. As both external fluxes of Y and Z are desired to be

maximized when X is externally provided, there is a tradeoff

region between these two objective functions: when more Y is

taken out of the system (higher JY), the concentration of Y

goes down and its contribution towards further transcription

of Z decreases, leading to lower JZ, and vice versa. This Pareto

frontier is shown in Fig. 7B and the optimization problem can

be expressed as follows:

Maximize
x
!

ðJY ; JZÞ

subject to: f ðx!Þ ¼ 0
HDRlb � HDR � HDRub

x
!
lb � x

! � x
!
ub

where f(
-
x) represents the nonlinear mass balance equations at

steady state and
-
x = [[X] JY JZ]

T. Recall that both JY and JZ
are negative since these fluxes are leaving the system. It is

important to note that at the Pareto frontier there is optimal

utilization of nutrient resources. SDE being minimal at the

optimal production indicates optimal production with efficient

energy utilization. This is in concurrence with the recent

experiments where evolutionary adaptation of E. coli towards

optimal metabolic fluxes and the key role of fitness criteria

in evolutionary selection of certain mutations has been

shown.45

The minimal Pareto frontier can be obtained by simulta-

neously minimizing JY and JZ for this transcription network.

This region is confined to a single point characterized by the

vector
-
x = [10�4, �10�5, �10�5]T. A vector in the space JYJZ

can be traced from the minimal point to any point on the

Pareto frontier for maximization (as shown in blue, green and
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orange in Fig. 7B). As the coordinates of this vector are

known, it can be equally divided in n points where point i

has the coordinates (JiY, J
i
Z). Each of these points can then be

fully determined by minimizing the input flux JX in order to

maximize the fixed ‘‘benefit’’ (given by the values of JiY and JiZ)

at the minimal ‘‘cost’’ (given by JX). This optimization

problem can be described as follows:

Minimize
x
!

ðJXÞ ðfor i¼ 1 :nÞ

subject to: f ðx!Þ ¼ 0
HDRlb � HDR � HDRub

JY ¼ Ji
Y ; JZ ¼ Ji

Z

x
!
lb � x

! � x
!
ub

Interestingly, we found that at Pareto-optimal environmental

surface, SDE is always the minimum for TRNs as seen in

Fig. 7B. Importantly, SDE steadily decreased when moving

throughout the feasible space along the vector from minimum

transcriptional fluxes to the Pareto-optimal maximal transcriptional

fluxes for FFL TRN systems.

4.2.2 Correlating pareto optimal surface with dissipative

energetics for feedback TRN loop subgraphs. The Feedback

TRN loop subgraph corresponds to a three-node system with

complete feedback and an OR input logic as shown in Fig. 8A.

This network is composed of twelve cycles: four of them are

involved in the transcription of X by both Y and Z, another four

cycles in the transcription of Y by X and Z, and four in the

transcription of Z by both X and Y. The first four cycles

correspond to cycle XA (transcription of X from its basal

activator A), cycle XY (transcription of X from the activator Y),

cycle XZ (transcription of X by Z), and cycle XYZ (transcription

of X by both Y and Z). The next four cycles involve cycle YB

(transcription of Y from its basal activator B), cycle YX

Fig. 7 (A) The Coherent Type-1 FFL with OR input logic. Parameters and optimization constraints are shown. Basal TF refers to the basal

activator (blue cycle), individual TF refers to only one transcription factor (for instance, X or Y in the transcription of Z), and combined TF refers

to the joint interaction between the individual activators (for instance, XY in the transcription of Z). (B) Pareto frontiers for transcriptional

regulatory networks (TRN) were obtained by considering the maximization of protein production rates of Y and Z as the appropriate TRN

objectives. Three node feedforward TRNs follow the Pareto dominance rule. SDE was found to be minimal at the Pareto frontier compared to the

non-Pareto feasible solutions. Following the solutions on the line vector from Pareto frontier of minimization to the Pareto frontier of

maximization there is a constant decrease in the SDE and it is minimal at the Pareto frontier optimal transcriptional rates. Here, basal kinetic

parameters and the basal maximal transcription rates and activation coefficients were selected in order to have JYT,Basal = 0.1�JYT,Max and JZT,Basal =

0.001�JZT,Max. The kinetic parameters of the other cycles were estimated in order to get the following activation coefficients: KYX = 0.01, KZX =

0.05, KZY = 0.5, KZXY = 104 [nM][5]. The combined contribution of XY is reduced in order to observe the individual effect of X and Y. By making

bZXY low and KZXY high, the transcription rate from the ZXY cycle is negligible. The maximal transcription rate of Y (bYX = 2) is twice the

maximal transcription rate of Z (bZX = 1 and bZY = 1). This was done in order to have concentrations of Y of the same order of magnitude of

Z since Y is being consumed when transcribes Z. The maximal consumption rate of Y corresponds to the maximal transcription rate of that cycle

(bZY = 1), and the net transcription rate of Y when fully transcribes Z is 1 [nM s�1].
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(transcription of Y from the activator X), cycle YZ (transcrip-

tion of Y by Z), and cycle YXZ (transcription of Y by both X

and Z). The last four cycles are cycle ZC (transcription of Z

from its basal activator C), cycle ZX (transcription of Z by the

activator X), cycle ZY (transcription of Z by activator Y) and

cycle ZXY (transcription of Z by both X and Y together). As

being depicted throughout this work, the basal cycles are

colored blue and the other cycles are green, meaning that

there is active transcription from all of them. Transcription of

Z occurs from all of the nine cycles because theOR input logic.

For this TRN, the minimal Pareto frontier is confined to a

single point characterized by the vector. x = [1.961 � 10�4,

�10�5, �10�5]T.
Notably, as seen in Fig. 8B we found that at Pareto-optimal

environmental surface, SDE is always the minimum for feed-

back subgraphs. Importantly, similar to FFL TRNs, SDE

steadily decreased when moving throughout the feasible space

along the vector from minimum transcriptional fluxes to the

Pareto-optimal maximal transcriptional fluxes for feedback

subgraphs.

The behavior of energetic cost at optimal conditions is along

the lines of existing paradigms which indicate that biological

systems operate under optimal environmental conditions with

optimal selection and utilization of existing mass resources in

E. coli.18,45 Extending the previous theory, our analysis

concludes that (a) maximally optimal transcriptional rates

are directly related with optimal utilization of available

energetic resources, and (b) at the maximal Pareto-optimal

condition the SDE is minimal. Therefore, natural systems

operating under Pareto-optimal conditions will always have

lowest specific energetic cost. We tried various architectures of

TRN motifs and found this phenomenon to be true in all

cases. Importantly, our optimality framework provides a

rationale for how cells integrate optimal selection and

utilization of resources with energetic-cost. Paradoxically, our

optimality results elicit that energetic cost is minimal at the

maximal/optimal resource utilization conditions although it

was not part of the cellular objectives being optimized. Thus,

rather than operating at optimal nutrient and functional con-

ditions, cellular regulatory systems simultaneously use energetic

Fig. 8 (A) The three-node transcription network with complete feedback and OR input logic. Parameters and optimization constraints are

shown. Basal TF refers to the basal activator (blue cycle), individual TF refers to only one transcription factor (for instance, X or Y in the

transcription of Z), and combined TF refers to the joint interaction between the individual activators (for instance, XY in the transcription of Z).

(B) Pareto frontiers for transcriptional regulatory networks (TRN) were obtained by considering the maximization of protein production rates of

Y and Z as the appropriate TRN objectives. Three node feedback TRNs follow the Pareto dominance rule. SDE was found to be minimal at the

Pareto frontier compared to the non-Pareto feasible solutions. Following the solutions on the line vector from Pareto frontier of minimization to

the Pareto frontier of maximization there is a constant decrease in the SDE and it is minimal at the Pareto frontier optimal transcriptional rates.

Notice that the basal kinetic parameters and thus the basal maximal transcription rates and activation coefficients were selected in order to have

JIT,Basal = 10�4�JIT,Max, for I = X,Y,Z. In addition, the kinetic parameters of the other cycles were found in order to get the following activation

coefficients: Kindividual = 0.1 and Kcombined = 104 [nM]. Kindividual refers to the individual action of a single transcription factor (cycles XY, XZ, YX,

YZ, ZX and ZY) and Kcombined refers to the combined action of two transcription factors (cycles XYZ, YXZ, and ZXY).5 As in the FFL TRN,

bcombined and Kcombined are low and high, respectively and bindividual = 2.
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cost minimization as the underlying basis, to operate under

globally optimal conditions.

4.3 Specific dissipation energy under pareto optimal conditions

predicts frequency of occurrence of motifs

We further studied the implications of energetic-cost on

network structure and motifs. We investigated whether biological

systems utilize this as a rule of selection, contributing to high

abundance of certain subgraphs (also defined as density or

occurrence frequency). FFLs can be classified as coherent

(Type-1 to 4) or incoherent (Type-1 to 4). Fig. 9A shows that

with either AND or OR input logics, FFLs can be divided into

Coherent-Type 1 to 4 (C1-FFL to C4-FFL) and Incoherent-

Type 1 to 4 (I1-FFL to I4-FFL). Independently of the Boolean

input logic or the Coherent or Incoherent structure, these

networks are composed of six cycles as shown in Fig. 7A:

Since both external fluxes of Y and Z are desired to be

maximized when X is externally provided, there is a tradeoff

region between these two objective functions. The details

of cyclic representation and parameters used for energetic

estimation in these FFLs are shown in Fig. S2.

Multiple lines of evidence5,46–49 suggest that coherent and

incoherent Type-1 FFL(I1-FFL) motifs are abundant in both

prokaryotic E. coli and the eukaryotic S. cerevisiae TRN

systems, while other FFL motifs rarely occur in these small

organisms. However, no explanation has yet been provided for

the rare occurrence of certain FFL types and the abundance of

a few motifs.5,48,49 To answer this question, we hypothesized

that SDE itself is the universal correlate used by biological

systems for selection during evolution. To evaluate this, we

first obtained the Pareto-averaged SDE (the average SDE over

the maximal Pareto frontier between transcription rates of
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proteins Y and Z) for all eight FFL motifs for both AND and

OR logics (Fig. 9A). Pareto-averaged SDE is found to be the

lowest for highly abundant FFL motifs and highest for rarely

occurring network motifs (Fig. 9A). Significantly, we observed

that Pareto-averaged SDE for both input logics (AND and

OR) correlates inversely with the abundance of the network

motif as experimentally determined5 for microorganisms

(E. coli and S. cerevisiae) as seen in Fig. 9B (Spearman’s

correlation coefficient = �0.43; p = 0.007). Notably, similar

SDE-network motif abundance correlation is obtained when

genes were used as nodes47 (Fig. S3). The preceding results show

that during evolution minimal SDE may have been an impor-

tant criteria used for development of highly organized complex

TRNs. The success of predicting abundance or the regulatory

role of network motifs depends on various factors which may be

limiting cells in different stages of their life cycle, as well as their

evolutionary history. Our results elicit that although energetics

necessarily may not be the rate limiting factor, at some period of

evolution it might have been the ‘‘bottleneck’’.

4.4 SDE links network topology with dynamic functionality

and evolutionary adaptations

The dynamical function has been used to explain the

occurrence frequency of motifs;1,5,7 however, it fails to do so

for functionally similar motifs. Type 1 coherent FFL as shown

earlier has higher occurrence frequency than Type 4 coherent

FFL. Similarly, Type 1 incoherent FFL has higher occurrence

frequency than Type 4 incoherent FFL. We hypothesized that

SDE can be used as the mapping function between network

topology and dynamic output.

We first estimated SDE for a dynamic scenario where a

phenotype exhibited by an incoherent FFL motif in the galactose

system of E. coli has been shown to be of pulse generation and

response acceleration.5,48,49 The dynamic responses of incoherent

FFLs with AND input logic (I1-FFL–I4-FFL) are compared in

Fig. 10 for an ON-OFF step change in the concentration of X

from 10�4 to 1 [nM]. At times t o 0, the system is allowed to

reach the initial steady state (ssi) for [X] = 10�4 [nM]. At t= 0

the ON step change in the concentration of X occurs and is

maintained at [X] = 1 [nM] for 10 [s]. This time is enough for

the system to reach a new steady state (ssf). At t Z 10 [s], the

OFF step change is induced and the concentration of X is

again brought to 10�4 [nM] and kept at this value for another

10 [s]. After this, the system attains the initial steady state (ssi).

Notice that in these FFLs, the transcription factor X always

activates Z in the direct transcriptional pathway. In the

indirect pathway (X activates or represses Z by transcribing

the intermediate Y first), different combinations between

activation and repression are considered. The dynamic

response of FFLs is compared to the dynamic response of

simple regulation (SR) X- Z. The parameters used in Fig. 10

for the FFLs are the same as used in Fig. 9. The SR case is

formed by only two cycles: cycle ZB and ZX. The parameters

used for these cycles are the same for their corresponding

cycles in the FFLs. In addition, the lower and upper limits in

the step change in the concentration of X correspond to the

lower and upper constraints in the Pareto frontiers used in

Fig. 9. In all of the responses, the concentrations were normal-

ized from 0 to 1 as shown in the equation below where

C represents any concentration, and [C]ssi and [C]ssf are the

concentrations of C at ssi and ssf, respectively.

½C�normalized ¼
½C� � ½C�ssi
½C�ssf � ½C�ssi

As theoretically explained5 and experimentally demon-

strated in the galactose system of E. coli,5,48–51 I1-FFL with

AND input logic generates a pulse and speeds up the response

time only in the ON phase. I4-FFL with AND input logic also

accelerates the response in this sign sensitive manner and

Fig. 9 Optimal SDE predicts the network motif abundance. (A) Optimal SDE of eight coherent and incoherent FFL motifs at the Pareto frontiers

with two input functions OR and AND. The input functions integrate the incoming signals at the promoter of gene Z. Here, arrow denotes

activation and symbol> denotes repression. The bar graph shows the averaged SDE over the Pareto frontier of a FFL motif. The Pareto frontier

was obtained between transcription fluxes JY and JZ. The symbolic representation of the corresponding cycles involved is shown below each FFL

in the figure and FFL types are marked C and I for coherent and incoherent. (B) Correlation of averaged Pareto-optimal SDE with relative

abundance of FFL motifs for E. coli and S. cerevisiae TRNs. Correlation is done for network motif relative abundance data obtained from

experimentally verified E. coli52 and S. cerevisiae 3 databases by considering gene as nodes. A statistically significant negative correlation

(Spearman correlation coefficient = �0.43 and p value = 0.007) between the Pareto-averaged SDE and the published data of relative abundance

of FFL motifs was observed. Spearman’s correlation coefficient was used to study the relationship between Pareto-averaged SDE values and

relative abundance of the 8 FFL motifs in yeast and E. coli based on the data published.5 SDE data from the AND and OR configurations were

pooled to increase the power of the test. The basal cycles (YA and ZB) are shown in blue, and the other cycles are either green if the transcription

factor behaves as an activator, or red if the transcription factor acts as a repressor. In the latter case, no transcription occurs and when there is no

arrow leaving the cycle. The basal kinetic parameters and thus the basal maximal transcription rates and activation coefficients were selected in

order to have JYT,Basal = 0.1�JYT,Max, J
Z
T,Basal = 0.001�JZT,Max. The kinetic parameters of the other cycles were found in order to get the following

activation coefficients: For activation: KYX = 0.01, KZX = 0.05, KZY = 0.5, KZXY = 104 (OR input logic) and KZXY = 0.025 (AND input logic)

[nM]. For repression: KYX = 1, KZX = 1, KZY = 10, KZXY = 107 (OR input logic) and KZXY = 0.025 (AND input logic) [nM]. For this analysis,

the combined contribution of XY for OR input logic is desired to be minimal in order to observe the individual effect of X and Y. By making bZXY

low and KZXY high, the transcription rate from the ZXY cycle is negligible. On the other hand, when the input logic is AND, the contribution from

the ZXY cycle has to be as important as the one from the individual transcription factors. In this case, bZXY = 1 is same as bZX = 1 and bZY = 1

and for the activation case KZXY = KZXKZY, as previously suggested.5 The maximal transcription rate of Y (bYX = 2) is twice the maximal

transcription rate of Z. This was done in order to have concentrations of Y of the same order of magnitude of Z since Y is being consumed when Z

is being transcribed. The maximal consumption rate of Y corresponds to the maximal transcription rate of that cycle (bZY = 1), and the net

transcription rate of Y when Z is fully transcribed is 1 [nM s�1].
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generates a pulse response.5 Both dynamical behaviors are

predicted by our transcriptional model. As shown in Fig. 10

during the ON response, I1-FFL and I4-FFL speeds up the

response by generating a pulse that overshoots the final steady

state (ssf) when compared to the SR. However, during the OFF

response, I1-FFL, I4-FFL, and SR have similar trajectory.

Fig. 10 Selection of network motifs for dynamic functionality utilizes energetics as the underlying basis. Comparison between I1-FFL and I4-FFL with

AND logic for an input pulse in input X. I1-FFL and I4-FFL with AND logic motifs have pulse generation and response acceleration in ON step as the

dynamic function. t1/2 is the time to reach 50% of the steady state and response time, tR is the time to attain the final steady state. t1/2 is slightly lower for

I1-FFL than I4-FFL but SDE of I1-FFL is significantly lower (10�) than I4-FFL. The dynamic responses are obtained for an ON-OFF step change in

the concentration of X. The step pulse duration is chosen to be long enough for the system to reach a new steady state. The response speed (t1
2
) is

quantified as the time required to reach 50% of the final steady state during the ON response. The response time (tR) is the time required for the system to

return to the initial steady state within a 1% of error. Using the cyclic kinetic TRNmodel we estimate the specific dissipated energy required for attaining

the dynamic function. The time-averaged SDE (hSDEi) represents the mean SDE during the response time: hSDEi ¼
R tR

0
SDEðtÞ dt
tR

.
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We quantified the accelerated response as the time required

to reach 50% of the final steady state during the ON response

(t1/2) as seen in Fig. 10. For I1-FFL and I4-FFL, these times

are tI1-FFL1/2 = 0.24 and tI4-FFL1/2 = 0.32 [s], respectively. It is to

be noted that the desired dynamic functionality (accelerated

ON response compared to SR) is present in both I1-FFL

Fig. 11 Selection of network motifs for dynamic functionality utilizes energetics as the underlying basis. Comparison between C1-FFL and C4-FFL

with AND logic for an input pulse in input X. C1-FFL and C4-FFL with AND logic motifs have delay in ON step with marginally higher delay for

C1-FFL. SDE is significantly lower (10�) for C1-FFL than for C4-FFL. The dynamic responses are obtained for an ON-OFF step change in the

concentration of X. The step pulse duration is chosen to be long enough for the system to reach a new steady state. The response speed (t1
2
) is

quantified as the time required to reach 50% of the final steady state during the ON response and the response time (tR) is the time required for the

system to return to the initial steady state within a 1% of error. Using the cyclic kinetic TRNmodel we estimate the specific dissipated energy required

for attaining the dynamic function. The time-averaged SDE (hSDEi) represents the mean SDE during the response time: hSDEi ¼
R tR

0
SDEðtÞ dt
tR

.
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and I4-FFL, and is only marginally better for I1-FFL. Our

kinetic TRN model allowed us to calculate the dissipated

energy required to fulfill the dynamic requirement during the

entire response time (tR) or time required for the system to

return to the initial steady state within a 1% of error

(tI1-FFLR = 16.7 and tI4-FFL1/2 = 15.6 [s]). The table in Fig. 10

shows the quantified values of dynamic responses of

SDE for I1-FFL and I4-FFL. When SDE is time averaged

during the response time, we found that the total averaged

specific dissipated energy hSDEi for both systems as:

hSDEiI1-FFL = 2.53 � 106 and hSDEiI4-FFL = 3.67 � 107

[J mol�1].

Both Type-1 (I1-FFL) and Type-4 (I4-FFL) incoherent

FFLs with AND input logic were found to have similar

dynamic phenotype for an ON-OFF step change in the

input signal X (Fig. 10). Thus, the current paradigm of

associating dynamic functionality with frequency of occur-

rence of motifs does not explain the variations in abundance

density since both FFL types had pulse generation and

response acceleration as a function with similar magnitude.

However, energetic-cost SDE indicates large magnitude

differences (at least one order of magnitude) between time-

averaged SDE (hSDEi) of I4-FFL and I1-FFL (Fig. 10). The

energetic hypothesis seems to perform better than dynamical

function in explaining abundance/rare occurrence of

incoherent FFLs.

Coherent FFLs have been shown in the arabinose system of

E. coli5 to have the sign-sensitive delay as the major dynamic

function. Sign-sensitive delay is defined as the response delay

when compared to simple regulation (SR) and it depends on

the sign of the input step (ON or OFF). As theoretically

explained5 and experimentally demonstrated in the arabinose

system of E. coli,49 the C1-FFL with AND logic presents a sign

sensitive delay for ON steps of the external signal X compared

to the SR. Similarly, C4-FFL with AND logic exhibits this

delay during the ON response but not during the OFF step

change.5 Both dynamical behaviors are predicted by our

kinetic model of TRNs, as shown in Fig. 11: during the ON

response. C1-FFL and C4-FFL initially is delayed compared

to the simple regulation, but during the OFF response,

C1-FFL, C4-FFL, and SR follow the same trajectory. For

C1-FFL and C4-FFL, the delay times are tC1-FFL1/2 = 1.15 and

tC4-FFL1/2 = 0.83 [s], respectively. Observe that the desired

functionality of ‘‘delayed response’’ (delayed ON response

compared to SR) is present in both C1 AND and C4 AND,

but is slightly better for C1 AND. We next calculated the

average SDE over the response time (tC1-AND
R = 16.3 and

tI4-AND
1/2 = 15.4 [s]). The table in Fig. 11 shows that averaged

SDE for both FFLS are hSDEiC1-FFL = 2.25 � 106 and

hSDEiC4-FFL = 1.67 � 107 [J mol�1].

Both, coherent Type-1 (C1-FFL) and coherent Type-4

(C4-FFL) FFLs were seen to have similar sign-sensitive delay

functionality (Fig. 11); hence, it cannot clearly establish the

rare occurrence of C4-FFL compared to C1-FFL. For a

step input in activator X, the delay with respect to SR was

marginally pronounced in C1-FFL than C4-FFL (Fig. 11).

Strikingly, we found that hSDEi was significantly lower for

C1-FFL than C4-FFL with AND logic thus consistent with

their abundance.

5. Conclusion

The energetic-cost theory presented here clearly indicates that

SDE may be a suitable basis for evolutionary selection of one

motif over another and could provide an explanation for the

rare occurrence of various network motifs. Here, we have used

a simplified non-equilibrium cyclic network modeling

approach to estimate heat dissipation involved during tran-

scription. Our analysis indicates that the Pareto-optimality

principle, when combined with NESS analysis, leads to

energetically efficient solutions for transcription. We showed

that the underlying energetic-cost criterion, SDE, for Pareto-

optimal conditions is a measure that reflects maximal

transcription at the lowest energetic demand. Beyond its

application as a functional basis in TRN motifs, the Pareto-

optimal SDE concept may also lead to an optimal and

energetically efficient design of synthetic gene circuits. Further

validation of this concept for protein and metabolic networks

is required to confirm its generality; however, the corres-

ponding abundance data for these networks is unavailable.

The finding that energetic cost may be used as an underlying

basis for evolutionary selection of between motifs having

similar dynamic functionality is of major significance. In our

future work, we are addressing the limitations imposed by

using lumped model and simplified approach for estimating

energetics. The new developments in high-performance

computing will allow explicit modeling of various processes

involved during transcription and translation such as confirmation

changes, structural modifications, DNA-protein interactions

and post translational changes in transcriptional network

models. The overwhelming diversity of possible dynamical

functions with highly-interactive biological networks limits

effective learning from experimental data alone. Network

analyses using knowledge of the often ignored energetics may

greatly reduce the hypothesis space, enabling identification

of new functionalities of dynamically perturbed large-scale

networks. Appropriate identifications of cellular objectives

involved in evolutionary decision making may provide a

potentially novel approach to identify optimal environmental

conditions and therefore, as a stand-alone strategy, may provide a

more efficacious simultaneous prediction and validation strategy

for biological networks.
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